With a proven record of continuous 3D development to support advanced research in the field of reconstructive surgery since 2001, 3dMD now offers its latest generation 3dMDtorso™ Solution, which incorporates the multi-purpose 3dMDtrio™ surface imaging system with its powerful 3dMDvultus™ treatment planning platform, for the busy private practice. More than a marketing tool, the 3dMD solution is built on a solid foundation of anatomical and biomechanical science assisting surgeons with calculating breast parameters and visualizing an electronic simulation in real-time to see how a manufacturer’s implant might affect the breast size and contour.

The biomechanical modeling engine incorporated in 3dMDvultus visually demonstrates potential outcomes in 3D right before the patient’s eyes. While other tools simply provide freehand sculpting and morphing, the 3dMDvultus software models the behavior and anticipated response of soft tissue. With 3dMD’s 3D expertise, consultation conversions become a result of treatment planning, not marketing tactics.

3dMDtorso™ Solution

The 3dMDtorso Solution is a turn-key package that incorporates the multi-purpose 3dMDtrio System and the sophisticated 3dMDvultus Breast Simulation Software based on a powerful biomechanical engine.

3dMDvultus™ Breast Simulation Software: This software is designed to help you communicate visually with patients, and more importantly, assist you with your decision-making process. With 3dMDvultus you can...

- easily define breast parameters by placing standard anatomical landmarks with the 3MD wizard interface to identify breast asymmetry,
- support the selection of the desired implant for each breast by enabling the surgeon to specify manufacturer, fill, shell, shape, profile, volume, or catalog number, or assisting with the design and placement of custom implants and prosthetics,
- enable a biomechanical model that defines the relationship between the skin, tissue, and implant to visualize the possible effects of the implant placement to the contour of the breast,
- shape the breast model with a biomechanical relationship visualized in real-time to address ptosis of the breast, and objectively evaluate the simulated outcome in direct comparison to the pre-op image captured during the patient consultation.

World Leader in High-Precision 3D Photography and Powerful Treatment Planning

With more than 800 3D Cameras supplied to customers worldwide, 3dMD is the system of choice for clinicians and surgeons who understand the value a high precision 3D surface imaging solution provides to their clinical and research initiatives.

Benefits to Your Practice

The 3dMDtorso Solution is designed to help your practice capitalize on the latest in non-invasive 3D imaging for patient examination and consultation, documentation, surgical planning, and outcomes assessment. 3dMD’s high precision 3D surface images serve as a planning and communication foundation, facilitating more effective dialogues through visualization with patients deciding whether breast surgery is right for them. 3dMD also eliminates the time and guesswork it takes to interpret traditional photographs and manually simulate a larger breast size by padding a brassiere.

With 800-plus 3D Cameras supplied to customers worldwide, 3dMD is the system of choice for clinicians and surgeons who understand the value a high precision 3D surface imaging solution provides to their clinical and research initiatives.

World Leader in High-Precision 3D Photography and Powerful Treatment Planning

- Walter Reed Army Medical Center
- University of the Pacific
- University of Texas HSC, Houston
- University of Texas HSC for Molecular Imaging
- University of Virginia
- University of Sydney (Australia)
- University of Sheffield (UK)
- University of Pittsburgh
- University of Pennsylvania
- University of Oxford (UK)
- University of Minnesota
- University of Michigan
- University of Iowa
- University of Illinois
- University of Copenhagen (Denmark)
- University of California, Los Angeles
- University of Alberta
- University of British Columbia
- University of Missouri
- University of Washington
- University of Minnesota
- University of Minnesota
- University of Pennsylvania
- University of Pittsburgh
- University of Sheffield (UK)
- University of Sydney (Australia)
- University of Texas HSC for Molecular Imaging
- University of Texas HSC, Houston
- University of the Pacific
- US Air Force-Lackland AFB
- Walter Reed Army Medical Center
The 3dMD database is architected to archive multiple simulations in 3D to enable the surgeon to evaluate and fine-tune the best option. This ability is a significant advantage for the treatment planning process.

For those who are interested in simulating potential outcomes for both breast and facial procedures, 3dMD has a full suite of 3D facial analysis and simulation software tools to support cosmetic, corrective, and reconstructive facial interventions, as well as non-surgical aesthetic procedures. The facial modules incorporated into the 3dMDvultus software are fully integrated with the 3dMDtrio hardware provided with the 3dMDtorso Solution.

3dMDtrio™ Imaging System: The multi-purpose 3dMDtrio System delivers sufficient subject coverage for facial and torso capture in a compact footprint that mounts easily on the wall of a clinic or private practice. Built on 3dMD’s a flexible modular approach, the 3dMDtrio can be easily upgraded to the 3dMDquattro configuration for an even wider variety of anatomic capture options with optimum surface area coverage whether the patient requires a breast reduction or body contouring. It is also rugged and compact enough to fit into suitcases and travel around the world.

A non-invasive device, the 3dMDtrio System is engineered with medical-grade machine vision cameras integrated and an industrial-grade flash system to ensure repeatable, quality-oriented results 24/7 in high-throughput environments. With a tight synchronization speed of only 1.5 milliseconds to capture the entire surface, the 3dMDtrio System eliminates the motion and correction artifacts unavoidably generated by slower devices. Once you position your patient in front of the 3dMDtrio System, all necessary information is captured in one click, enabling your patients to maintain a sense of modesty during the documentation process. To ensure the integrity of the 3dMD image, all 3dMD systems now include system movement detection to correct any calibration discrepancies in the event the system is accidently bumped in a crowded room.

With 3dMD you can capture and render the 3D surface image at the beginning of the patient consultation, and immediately sit down with your patient along with the digital 3D image to discuss next steps. 3dMD’s image rendering technology uses a state-of-the-art photogrammetric reconstruction technique that works consistently in all types of lighting environments to generate an accurate anatomical geometry with high resolution skin, teeth, and hair texture for optimum patient presentation.

Commitment to Quality
3dMD has a strong record of customer satisfaction based on many years of experience in supplying sophisticated 3D imaging systems and software to reputable, thought-leading teaching institutions, hospitals, and private practices. As a result, the 3dMD global 3D customer community today has reached 800-plus 3D Cameras and it is still rapidly growing!

From the beginning, 3dMD has embraced the continual feedback from its pioneering customer community. Their input has been formally incorporated into 3dMD’s continuous cycle of engineering and software refinements to achieve the ultimate in reliability, functionality, and usability. The online update facility in our 3dMDvultus software platform enables new features and functions to be supplied in hours, so you no longer have to wait around for annual upgrades! All 3dMD products are open, so they are constantly being integrated with those from other complementary suppliers to ensure efficiency within your practice, as well as industry. We are dedicated to supporting a user community that will continue to push the advancement and use of 3D to improve patient care.