Thirteen-year follow-up of a mandibular implant-supported fixed complete denture in a patient with Sjogren’s syndrome: A clinical report

Paul P. Binon, DDS, MSD
School of Dentistry, Indiana University, Indianapolis, Ind, and University of California
San Francisco, San Francisco, Calif

This clinical report describes the treatment and long-term follow-up of a patient with Sjogren’s syndrome treated with osseointegrated implants and a mandibular fixed complete denture. The implants and prosthesis have remained stable and functional for 13 years. Implant treatment may, therefore, offer a viable long-term treatment alternative for patients with Sjogren’s syndrome. (J Prosthet Dent 2005;

M

inimal long-term clinical documentation exists in the literature regarding the treatment of Sjogren’s syndrome (SS) patients with osseointegrated implants.1,2 The detailed course of treatment of a 64-year-old man with Sjogren’s syndrome was documented in 1993.3 The significant oral implications of SS include the following: xerostomia due to reduced salivary flow; rampant caries; chronically inflamed, irritated, and burning oral mucosa; inflamed, enlarged, and hardening salivary glands; and an increased incidence of chronic candidiasis.4,5 Patients also experience dry eyes, angular cheilitis, increased plaque retention, changes in taste perception, and difficulty swallowing. Denture wear is a considerably difficult and unpleasant experience for most patients with SS.2 The intent of this clinical report is to document the long-term beneficial aspects of treating an SS patient with an implant-supported mandibular fixed denture.

CLINICAL REPORT

The patient, a 67-year-old white man, had extensive fixed prosthodontic treatment of the mandibular arch that failed within 5 years of placement due to cervical caries. In retrospect, this may have been the first indication of the effects of xerostomia. The previous treating dentist then recommended coronal reduction, endodontic treatment of the retained roots, silver amalgam coronal restorations, and 2 intraradicular attachments (Zest Anchors, Escondido, Calif) to retain an overdenture. This treatment plan was implemented, and 4 months following completion of treatment, the roots demonstrated recurrent caries and loss of the silver amalgam restorations and the attachments. The apparent intent of this treatment plan was to preserve the alveolar ridge and provide mechanical retention. Because the systemic condition was not diagnosed and the treating dentist failed to recognize the serious implications of reduced salivary flow, no supportive or preventive measures were initiated, resulting in extensive root caries (Fig. 1). The overdenture became progressively unstable and nonretentive, and the patient sought the services of a prosthodontic specialist. At the initial examination, the patient was wearing a complete maxillary denture and a mandibular overdenture; the roots of the mandibular incisors, canines, and right first and second premolars were intact. The patient’s primary complaints were chronic tissue discomfort, recurrent denture sores, difficulty masticating, and mandibular denture instability. The patient also reported chronic dry mouth that had increased in severity over the previous 2 years. Several other clinical indicators suggested a systemic etiology, and a referral to his physician for further evaluation was made.

Following examination by his physician and a rheumatologist, he was diagnosed with SS. Sjogren’s syndrome is a chronic inflammatory disorder of unknown etiology that is probably autoimmune in nature.7 In the presence of other autoimmune disorders, such as rheumatoid arthritis, systemic lupus, sclerosis, or polymyositis, it is considered in its secondary form and has an occurrence of approximately 30% in these patients.4,6 It is most common in middle-aged women, with a 9:1 predominance over males.

The most significant oral manifestation of SS is chronic xerostomia, as well as the dental implications previously described. Additional validation of this diagnosis is the presence of keratoconjunctivitis sicca (reduced tear flow) and salivary gland enlargement. The conclusive test for SS, however, is based on a salivary gland biopsy.4 Typically, there is also an associated connective tissue or lymphoproliferative disorder present. Sjogren’s syndrome is an incurable disease at the present time. The oral and opthalmic manifestations are typically not progressive. Treatment is generally symptomatic and involves lubricants, artificial tears, salivary substitutes, increased water intake, salivary stimulation, and aggressive caries prevention. Severe extraglandular involvement typically results in treatment with systemic corticosteroids and immunosuppressive medications.5,6

4Adjunct Professor of Prosthodontics, Indiana University; Assistant Research Scientist, Restorative Department, University of California San Francisco; Private prosthodontic and implant practice, Roseville, Calif.
The results of the clinical examination and the treatment planning sequence were described in detail in the original clinical report.3 Radiographically and clinically, the pretreatment condition is shown in Figures 1 and 2.

Six implants (Nobelpharma AB, Gothenburg, Sweden) were placed immediately between the mental foramina following the extraction of the remaining carious teeth in April of 1991. Four months later, abutments (Nobelpharma AB) were connected to the implants, and a fixed supported prosthesis and new maxillary denture were constructed.

From a surgical perspective, there were some alterations of the classic Branemark protocol.8,9 To reduce treatment and healing time, extractions and implant placement were concurrent. Immediate implant placement was a concept in its infancy at that time.10,11

In addition, previous authors advocated removing the entire superior cortical plate to a level well below the apicies of the existing sockets prior to placement of the implants in medullary bone.12 In contrast, the surgeon’s approach was a limited alveolectomy with the intent of preserving maximal bone height and dense cortical bone. If the conventional rationale advocated at that time had been used, only five 15-mm implants would have been placed. The limited alveolectomy and preservation of bone, however, resulted in placement of five 20-mm implants and one 10-mm implant. The net result was an increase of approximately 33% of implant surface available for integration. This also allowed the implants to have bicortical stabilization. In the author’s judgment, there was little justification for removing healthy alveolar bone unless inadequate interarch space to accommodate the prosthesis was present.3 In 1990, no documentation was reported in the literature regarding SS patients’ responses to osseointegrated implants. It was, therefore, prudent to maximize the number and length of the implants used to treat this patient.

Initial postoperative healing was uneventful. The implants were exposed and standard abutments were placed in July of 1991. Temporary cylinders (3i Implant Innovations Inc, Palm Beach Gardens, Fla) were secured to the abutments, and the existing denture was converted to a fixed transitional prosthesis ad modum Balshi.13 A mandibular transfer impression was completed at the same time to construct a cast gold (Sterngold Dental, Attleboro, Mass) substructure. The framework was evaluated intraorally for passive fit, and interocclusal records were obtained. Following a trial insertion of the denture tooth arrangement, the denture was processed and the completed prosthesis was inserted. Subsequent to insertion of the definitive mandibular prosthesis, the patient was seen on a regular recall basis for 13 years (Fig. 3). Initially, the recall was on an alternating 3-month basis with a periodontist. In 1995, the schedule changed to an alternating 6-month recall. During the course of approximately 28 recall appointments over a period of 13 years, the implants and the prosthesis have been well maintained. No complications have been reported.
stable and without any complications. The mandibular prosthesis was removed and the abutments were evaluated in 1993, 1994, 1998, and 2002. The abutment screws were retightened to 20 N-cm with a mechanical torque driver (Nobelpharma AB). Typically, the abutment screws required a one quarter to one half turn to reach the appropriate torque value. The prosthesis remained clinically stable during the 13-year follow-up period. The gold prosthetic screws were resistant to removal with a hand driver, and none were considered "loose" during the entire follow-up period. No abutment screws or gold prosthetic screws fractured during the 13-year follow-up period. With few exceptions, implant probing depths were consistently 3 mm. This patient maintained above average home hygiene during the entire follow-up period.

Although no standardized technique was implemented and equipment changes occurred, sequential radiographs made during the follow-up period demonstrated no significant discernable bone loss around any of the dental implants (Fig. 4). The tissues show little change after 14 years of function (Fig. 5). The cantilever distal extension areas of the fixed complete denture have been relieved on 2 occasions to reduce tissue contact due to bone proliferation and to increase hygiene access. Progressively, the maxillary and mandibular prostheses have demonstrated considerable wear and attrition. There has also been a loss of the vertical dimension of occlusion and loss of peri-oral tissue support. The occlusal surfaces have been worn flat, and a slight open posterior articulation is now present (Fig. 6). A new maxillary denture and a mandibular rebase have been recommended to alleviate these problems and to improve masticatory function. The wear patterns exemplified in this patient are not different from those experienced by non–SS patients restored with fixed mandibular prostheses that have been followed clinically in the author’s practice for the past 22 years. The patient’s medical history during this time has remained generally benign, with periodic episodes of rheumatoid arthritis requiring prednisone treatment, gall bladder surgery, and an injury to the rib cage sustained in a fall. The use of prolonged corticosteroids has been documented to cause significant metabolic side effects that include hyperglycemia,
hypertension, osteoporosis, and myopathy. To minimize steroid osteopenia, patients that take corticosteroids for more than a few days should receive supplemental calcium and vitamin D. The direct effect of steroid-induced osteoporosis on osseointegrated dental implants has not been clearly demonstrated. It appears that steroid administration may have less effect on bone density and the osseointegration of titanium implants in the mandible than in skeletal bone in general.

SUMMARY

Over the course of 13 years, treatment of a man with SS has been documented. The treatment has been successful and without untoward effects. The patient reported dramatic improvements in comfort, function, and esthetics immediately after treatment and continues to report satisfaction with the treatment received. Based on the long-term favorable results experienced by this patient, other patients with SS and severe dry mouth may benefit from the placement of implant-supported prostheses. The merits of immediate placement of implants and the preservation of maximal vertical bone height have also been supported with this patient’s treatment.

REFERENCES

14. van Vollenhoven RF. Corticosteroids in rheumatic disease: understanding their effects is key to their use. Postgraduate Medicine 1998;103:137-42.
TOC Summary:

This clinical report describes the treatment and follow-up of a patient with Sjogren’s syndrome using osseointegrated implants and a mandibular fixed complete denture, and indicates that patients with SS and severe dry mouth may benefit from the placement of an implant-supported prosthesis.